

Welcome to bear_hug’s documentation!

Contents:

	Module API reference
	bear_hug package

bear_hug is a library for building ASCII-art games and apps in Python 3.6+.

Note that this is not curses-like library; bear_hug uses
bearliterminal [http://foo.wyrd.name/en:bearlibterminal] as a backend, which
in turn uses SDL. It is not meant to work in a TTY.

Currently available:

	multiple useful widgets like layouts, labels, animated
widgets and so on

	event system

	basic input (keyboard and mouse)

	WAV sound using simpleaudio [https://pypi.org/project/simpleaudio/]

	entity-component system for your gamedev needs

Source code is available (and pull requests are welcome) at the
github repository [https://github.com/synedraacus/bear_hug]

For an example of a simple game made with this library, check out my Ludum Dare
41 gravity-controlled Tetris variant.

[image: Indirectris screenshot]
(LD page [https://ldjam.com/events/ludum-dare/41/indirectris] |
repository [https://github.com/synedraacus/indirectris])

This one is made using only basic widgets and events. For a more complex
ECS-based game, take a look at
this repository [https://github.com/synedraacus/brutality] (work in progress).

Installation

Stable version can be downloaded from PyPI with

pip install bear_hug

Latest versions can always be downloaded from the
repository [https://github.com/synedraacus/bear_hug]. Prerequisites are
bearlibterminal and, if you plan to use sound, simpleaudio.

Authors

Alexey Morozov aka synedraacus

License

The library itself is available under the terms of MIT license.

Sounds and images included in the demos are available under the terms of CC-BY 3.0

Indices and tables

	Index

	Module Index

	Search Page

bear_hug

	bear_hug package
	Submodules
	bear_hug.bear_hug module

	bear_hug.bear_utilities module

	bear_hug.ecs module

	bear_hug.ecs_widgets module

	bear_hug.event module

	bear_hug.resources module

	bear_hug.sound module

	bear_hug.widgets module

	Module contents

bear_hug package

Submodules

	bear_hug.bear_hug module

	bear_hug.bear_utilities module

	bear_hug.ecs module

	bear_hug.ecs_widgets module

	bear_hug.event module

	bear_hug.resources module

	bear_hug.sound module

	bear_hug.widgets module

Module contents

bear_hug.bear_hug module

An object-oriented bearlibterminal wrapper with the support for complex ASCII
art and widget-like behaviour.

	
class bear_hug.bear_hug.WidgetLocation(pos, layer)

	Bases: tuple

	
layer

	Alias for field number 1

	
pos

	Alias for field number 0

	
class bear_hug.bear_hug.BearTerminal(font_path='../demo_assets/cp437_12x12.png', **kwargs)

	Bases: object

A main terminal class.

This class corresponds to a single window and is responsible for drawing
whatever widgets get added to this window, as well as processing any input.

Accepts bearlibterminal library configuration options [http://foo.wyrd.name/en:bearlibterminal:reference:configuration] as
kwargs to self.__init__. Currently only library settings are supported
and there is no support for changing them on the fly.

	
start()

	Open a terminal and place it on the screen.

Library settings that were passed as kwargs to self.__init__() get
actually applied during when this method is executed.

	
clear()

	Remove all widgets from this terminal, but do not close it.

	
refresh()

	Refresh a terminal.

Actually draws whatever changes were made by *_widget methods.

	
close()

	Close a terminal.

Does not destroy Widget objects or call any other cleanup routine.

	
add_widget(widget, pos=(0, 0), layer=0, refresh=False)

	Add a widget to the terminal and set widget.terminal to self.

No two widgets are allowed to overlap within a layer and no widget can
be added twice.

	Parameters

	
	widget – a Widget instance

	pos – top left corner of the widget

	layer – layer to place the widget on

	refresh – whether to refresh terminal after adding the widget. If False, the widget will not be actually shown until the next terminal.refresh() call

	
remove_widget(widget, refresh=False)

	Remove widget from the terminal.

This method does not cause or imply the destruction of Widget object; it
merely removes it from the terminal.

	Parameters

	
	widget – A widget to be removed

	refresh – whether to refresh the terminal after removing a widget. If False, the widget will be visible until the next terminal.refresh() call

	
move_widget(widget, pos, refresh=False)

	Move widget to a new position.

Widgets can only be moved within the layer. If it is necessary to move
a widget from one layer to another, it should be removed and added anew.

	Parameters

	
	widget – A widget to be moved

	pos –
	param refresh

	whether to refresh the terminal after removing a widget. If False, the widget won’t move on screen until the next terminal.refresh() call

	
update_widget(widget, refresh=False)

	Actually draw widget chars on screen.

If widget.chars or widget.colors have changed, this method will
make these changes visible. It is also called by self.add_widget()
and other methods that have a refresh argument.

	Parameters

	widget – A widget to be updated.

	
get_widget_by_pos(pos, layer=None)

	Return the widget currently placed at the given position.

	Parameters

	
	pos – Position (a 2-tuple of ints)

	layer – A layer to look at. If this is set to valid layer number, returns the widget (if any) from that layer. If not set, return the widget from highest layer where a given cell is non-empty.

	
check_input()

	Check if terminal has input. If so, yield corresponding BearEvent.

This method returns an iterator because it’s possible there would be
more than one event in a single tick, eg when two buttons are pressed
simultaneously.

This method mostly just wraps bearlibterminal’s input behaviour in
`events<foo.wyrd.name/en:bearlibterminal:reference:input>`_, with
a single exception: in bearlibterminal, when a key is pressed and held
for more than a single tick, it first emits key_down, then waits for
0.5 seconds. Then, if the key is not released, it assumes the key is
indeed held and starts spamming events every tick. This makes sense to
avoid messing up the typing (where a slow typist would get char
sequences like tthiisss).

Bearlibterminal, on the other hand, is meant mostly for games that
require more precise input timing. Therefore, it starts spamming
key_down events immediately after the button is pressed and expects
widgets and listeners to mind their input cooldowns themselves.

	Yields

	BearEvent instances with event_type set to misc_input, key_up or key_down.

	
check_state(query)

	Wrap BLT state [http://foo.wyrd.name/en:bearlibterminal:reference#state]

Accepts any of the TK_* strings and returns whatever terminal.state has
to say about it.

	Parameters

	query – query string

	
class bear_hug.bear_hug.BearLoop(terminal, queue, fps=30, profile=False)

	Bases: object

A loop that passes events around every 1/fps seconds.

Every tick, the loop calls its run_iteration() method, adding
tick-related and input-related events to the queue, and then forcing it to
start passing all events to the correct subscribers.

There are two tick-related events. In the beginning of the tick it’s
tick-type event whose value is time since the last similar event (in
seconds). This is guaranteed to be emitted before any other events from this
tick, since the queue wouldn’t finish the previous one until it was empty.

In the end of the tick it’s a service-type event with the value
‘tick_over’, which is emitted after the entire queue has been processed.
It is meant to let subscribers know that the tick is over and nothing is
going to happen until the next one. This is, for example, a perfect moment
for a Layout to redraw itself, or for a logger to write everything down.

If any events are emitted in response to this event, they will be passed
around before the next tick. This is a great source of bugs, so it is
not advised to respond to tick_over unless absolutely necessary.

The loop cannot be started until it has a valid terminal. When the loop is
stopped, this terminal is shut down.

	Parameters

	
	terminal – a BearTerminal instance to collect input from.

	queue – a bear_hug.event.BearEventDispatcher instance to send events to.

	fps – a number of times per second this loop should process events.

	
run()

	Start a loop.

It would run until stopped with self.stop()

	
stop()

	Order the loop to stop.

It would not actually do it until the current tick is processed.

bear_hug.bear_utilities module

A collection of random stuff for bear_hug that wouldn’t fit into other submodules.

Includes a series of useful functions and all bear_hug exception classes.

	
bear_hug.bear_utilities.shapes_equal(a, b)

	Tests if two nested lists are of the same shape

	Parameters

	
	a – list

	b – list

	Returns

	True if lists are indeed of the same shape, False otherwise

	
bear_hug.bear_utilities.copy_shape(l, value=None)

	Takes a nested list and returns the new list of the same shape, completely
filled with the same value.

May cause bugs when the value is mutable (for example, a list) because it
fills the returned list with (pointers to) the same element, not independent
copies. Since in practice this function is used to create colors for a
widget with known chars, or otherwise to mess around with chars/colors
data (which are normally replaced entirely, not edited), it is left for the
callers to make sure their values are OK.

	Parameters

	
	l – initial list

	value – value to fill the list with

	
bear_hug.bear_utilities.slice_nested(l, slice_pos, slice_size)

	Slice the nested list

	Parameters

	
	l – a nested list

	slice_pos – a 2-tuple (x, y) of slice start

	slice_size – a 2-tuple (width, height) of slice size

	
bear_hug.bear_utilities.rotate_list(l)

	Take a nested list of (x, y) dimensions, return an (y, x) list.

	Parameters

	l – a 2-nested list

	
bear_hug.bear_utilities.rectangles_collide(pos1, size1, pos2, size2)

	Return True if the rectangles collide

Rectangles are supplied in [x,y], [xsize, ysize] form with the left corner
and size. Assumes positions and sizes to be sorted

	Parameters

	
	pos1 – top left corner of the first rectangle, as (x, y) 2-tuple

	size1 – size of the first rectangle, as (width, height) 2-tuple

	pos2 – top left corner of the second rectangle, as (x, y) 2-tuple

	size2 – size of the second rectangle, as (width, height) 2-tuple

	
bear_hug.bear_utilities.has_values(l)

	Returns True if a 2-nested list contains at least one truthy value.

	Parameters

	l – a nested list

	Returns

	

	
bear_hug.bear_utilities.blit(l1, l2, x, y)

	Blits l2 to l1 at a given pos, overwriting the original values.

This method does not actually affect l1; instead, it copies it to a new
variable, sets whatever values need to be set, and returns the modified
copy.

	Parameters

	
	l1 – A 2-nested list.

	l2 – A 2-nested list.

	y (x,) – A top left corner of l2 relative to l1.

	Returns

	

	
bear_hug.bear_utilities.generate_box(size, line_width='single')

	Generate a chars list for a box bounded by pseudographic lines.

Uses CP437 chars 0xB3-0xDA translated to Unicode points (see
`here<http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP437.TXT>`_
for the translation table)

	Parameters

	
	size – an (xsize, ysize) tuple

	line_width – str. Either ‘single’ or ‘double’

	Returns

	a nested list of chars.

	
class bear_hug.bear_utilities.Singleton

	Bases: type

A Singleton metaclass for EntityTracker

	
exception bear_hug.bear_utilities.BearException

	Bases: Exception

A base class for all bear_hug exceptions

	
exception bear_hug.bear_utilities.BearLoopException

	Bases: bear_hug.bear_utilities.BearException

Something wrong with the loop or event system.

	
exception bear_hug.bear_utilities.BearLayoutException

	Bases: bear_hug.bear_utilities.BearException

Something wrong with adding/drawing/removing a Widget on a Layout

	
exception bear_hug.bear_utilities.BearECSException

	Bases: bear_hug.bear_utilities.BearException

Something wrong with Entity-Component System.

	
exception bear_hug.bear_utilities.BearSoundException

	Bases: bear_hug.bear_utilities.BearException

Something wrong with the sound.

	
exception bear_hug.bear_utilities.BearJSONException

	Bases: bear_hug.bear_utilities.BearException

Something wrong with JSON (de)serialization of widgets or entities.

	
exception bear_hug.bear_utilities.BearResourceException

	Bases: bear_hug.bear_utilities.BearException

Something wrong with loading ASCII assets

bear_hug.ecs module

Entity-component system.

Entities are just an ID and the container of components. The major way for them
to do something useful should be components calling something like
self.owner.that_other_component.do_stuff() or emitting events.

The creation of a new Entity is announced by the following event:
BearEvent(event_type='ecs_create', event_value=entity)

It is an only event type that uses the actual entity object, not its ID, as
event_value. When this event is emitted, the entity should be ready to work;
in particular, all its components should be subscribed to the appropriate events.

Both Entities and Components can be serialized to JSON using repr(object)
and then deserialized.

	
class bear_hug.ecs.Entity(id='Default ID', components=[])

	Bases: object

A root entity class.

This is basically a container of components, and an ID.

Entity ID not checked for uniqueness during Entity creation, because it’s
possible that the Entity object will be created before the queue is turned
on (and, therefore, before EntityTracker knows anything about any entities),
but having non-unique IDs is practically guaranteed to cause some
entertaining glitches.

When the component is added to the Entity, its name (a component.name
attribute) is added to entity.__dict__. This way, other components can
then address it as self.owner.position or self.owner.widget or
whatever. Names thus serve as something like slots, so that an entity
couldn’t have multiple components for the same function. Possible names are
not restricted in any way, but it is strongly recommended not to change them
during inheritance between Component subclasses, and especially not to use
the same name for any two components that could ever possibly be used within
a single entity.

	Parameters

	
	id – a string used as an Entity ID.

	components – an iterable of Component instances that can will be added to this entity.

	
add_component(component)

	Add a single component to the Entity.

Raises exception if Component.name is already in self.__dict__
and not in self.components. This allows overwriting
components (should you want to change eg the entity’s widget), while
protecting the non-Component properties.

	Parameters

	component – A Component instance.

	
remove_component(component_name)

	Remove a single component from this entity.

Uses the Component.name, not an actual instance, as an argument. If
the Entity doesn’t have such a component, raises BearECSException

	Parameters

	component_name – The name of a component to remove

	Returns

	

	
class bear_hug.ecs.Component(dispatcher, name='Root', owner=None)

	Bases: bear_hug.widgets.Listener

A root component class.

Component name is expected to be the same between all components of the same
general type (normally, base class for a given role, like position
component, AI/input controller or a widget interface) and all its
subclasses). Component inherits from Listener and is therefore able to
receive and return BearEvent. Of course, it needs the correct
subscriptions to actually get them.

repr(component) is used for serialization and should generate a valid
JSON-encoded dict. It should always include a ‘class’ key which
should equal the class name for that component and will be used by a
deserializer to determine what to create. All other keys will be
deserialized and treated as kwargs to a newly-created object. To define the
deserialization protocol, JSON dict may also contain keys formatted as
{kwarg_name}_dtype which should be a string and will be eval-ed during
deserialization. Only Python’s builtin converters (eg str, int or
float) are allowed; custom ones are currently unsupported.

For example, the following is a valid JSON:

`
{"class": "TestComponent",
"x": 5,
"y": 5,
"direction": "r",
"former_owners": ["asd", "zxc", "qwe"],
"former_owners_type": "set"}
`

Its deserialization is equivalent to the following call:

x = TestComponent(x=5, y=5, direction='r', former_owners=set(['asd', 'zxc', 'qwe']))

The following keys are forbidden: ‘name’, ‘owner’, ‘dispatcher’. Kwarg
validity is not controlled except by Component.__init__().

	Parameters

	
	dispatcher – A queue that the component should subscribe to. Component.__init__() may use this to subscribe to whatever events it needs.

	name – A name that will be added to Entity.__dict__. Should be hardcoded in all Component subclasses.

	owner – the Entity (actual object, not ID) to which this object should attach.

	
set_owner(owner)

	Register a component owner.

This is only useful if the component is passed from one owner to
another, or if the component is created with the owner argument (thus
attaching it immediately upon creation). This method calls owner’s
add_component

	Parameters

	owner – an Entity to attach to.

	
on_event(event)

	Component’s event callback. Should be overridden if subclasses want to
process events.

	Parameters

	event – BearEvent instance

	
class bear_hug.ecs.EntityTracker

	Bases: bear_hug.widgets.Listener

A singleton Listener that keeps track of all existing entities.

Listens to the ecs_add and ecs_destroy events, updating
self.entities accordingly.

Can be used to look up an entity by its ID:

entity_called_id = EntityTracker.entities['entity_id']

Can also be used to get all entities that correspond to some criterion:

entity_iter = EntityTracker().filter_entities(lambda x: 'part_of_id' in x.id)

	
filter_entities(key=<function EntityTracker.<lambda>>)

	Return all entities for which key evaluates to True.

Note that this method returns entity objects themselves, not the IDs.

	Parameters

	key – A single-arg callable

	Returns

	iterator of Entities

	
class bear_hug.ecs.WidgetComponent(dispatcher, widget, owner=None)

	Bases: bear_hug.ecs.Component

Widget as a component.

This component is an ECS wrapper around the Widget object. Since Widgets
can accept events and it is sometimes reasonable to keep some event logic in
the Widget instead of Components (ie to keep animation running), its
on_event method simply passes the events to the Widget. It also supports
height, width and size properties, also by calling widget’s ones.

	Parameters

	widget – A Widget instance.

	
height

	Height of the widget

	
width

	Width of the widget

	
size

	A (width, height) tuple

	
class bear_hug.ecs.SwitchWidgetComponent(*args, **kwargs)

	Bases: bear_hug.ecs.WidgetComponent

A widget component that supports SwitchingWidget.

Provides methods to use its widget-switching abilities without other
components having to call Widget object directly.

	
switch_to_image(image_id)

	Switch widget to a necessary image.

If image ID is incorrect, the widget will raise BearException.

	Parameters

	image_id – image ID (str)

	
validate_image(image_id)

	Return True if image_id is a valid ID for its widget

	Parameters

	image_id – image ID (str)

	
class bear_hug.ecs.PositionComponent(dispatcher, x=0, y=0, vx=0, vy=0, last_move=(1, 0), affect_z=True, owner=None)

	Bases: bear_hug.ecs.Component

A component responsible for positioning an Entity on ECSLayout.

	Parameters

	
	x – A position of top left corner along X axis.

	y – A position of top left corner along Y axis

	vx – Horizontal speed (chars per second)

	vy – Vertical speed (chars per second)

	affect_z – Set Z-level for widgets when placing. Default True

	
move(x, y, emit_event=True)

	Move the Entity to a specified position.

	Parameters

	
	x – x

	y – y

	emit_event – If True, emit an ‘esc_move’ event. There are a few cases (ie setting the coordinates after the component is created, but before the entity is added to the terminal) where this is undesirable.

	
relative_move(dx, dy, emit_event=True)

	Move the Entity to a specified position relative to its current position.

	Parameters

	
	dx – Movement along X axis, in chars

	dy – Movement along Y axis, in chars

	emit_event – gets passed to self.move() under the hood.

	
on_event(event)

	Process tick, if dx != 0 or dy != 0

	Parameters

	event – A BearEvent instance

	
class bear_hug.ecs.DestructorComponent(*args, is_destroying=False, **kwargs)

	Bases: bear_hug.ecs.Component

A component responsible for cleanly destroying its entity and everything
that has to do with it.

When used, all owner’s components except this one are unsubscribed from all
events. The deletion does not happen until tick end, to let any running
interactions involving the owner finish cleanly.

	
destroy()

	Destroy this component’s owner.

Unsubscribes owner and all its components from the queue and sends
‘ecs_remove’. Then all components are deleted. Entity itself is left at
the mercy of garbage collector.

	
class bear_hug.ecs.CollisionComponent(*args, depth=0, z_shift=(0, 0), face_position=(0, 0), face_size=(0, 0), passable=False, **kwargs)

	Bases: bear_hug.ecs.Component

A component responsible for processing collisions of this object.

Stores the following data:

depth: Int, a number of additional Z-levels over which collision is possible.
Additional collisions are detected on lower Z-levels, ie the level where the
object is displayed is always considered to be the front. Defaults to 0,
ie collides only to the objects within its own Z-level.

z_shift: A 2-tuple of ints. Every next Z-level is offset from the
previous one by this much, to create perspective. Defaults to (0, 0), ie no
offset.

face_position: A tuple of ints describing upper left corner of the
collidable part of the entity on the top Z-level. Defaults to (0, 0), ie the
upper left corner of the widget is where the hitbox begins. This is a
suitable default for flat items, but not for something drawn in perspective.

face_size: A tuple of ints describing the size of the collidable part
of the entity on the top Z-level. If set to (0, 0), entire entity widget is
considered collidable. Defaults to (0, 0). There is no method for making
uncollidable entities via setting zero face size; for that, just create your
entities without any CollisionComponent at all.

passable: whether collisions with this item should be blocking. This
class by itself does nothing with this knowledge, but child classes may
need it to make distinction between collisions where further movement is
impossible (eg walls) and collisions that should be detected, but do
not prevent movement (eg walking through fire). Defaults to False, ie
blocking collision.

This is a base class, so its event processing just calls
self.collided_into(other_entity) when owner moves into something, and
self.collided_by(other_entity) when something else moves into the owner.
Both methods do nothing by themselves;actual collision processing logic
should be provided by subclasses.

Creating entities with the CollisionComponent but without either
PositionComponent or WidgetComponent is just asking for trouble.

	
class bear_hug.ecs.WalkerCollisionComponent(*args, **kwargs)

	Bases: bear_hug.ecs.CollisionComponent

A collision component that, upon colliding into something impassable (or
screen edges), moves the entity back to where it came from.

Expects both entities involved to have a PositionComponent and a
PassabilityComponent.

	
class bear_hug.ecs.DecayComponent(*args, destroy_condition='keypress', lifetime=1.0, age=0, **kwargs)

	Bases: bear_hug.ecs.Component

Attaches to an entity and destroys it when conditions are met.

Expects the owner to have DestructorComponent.

	Parameters

	
	destroy_condition – either ‘keypress’ or ‘timeout’

	lifetime – time between entity creation and its destruction. Does nothing if destroy_condition is set to ‘keypress’. Defaults to 1 second.

	age – the age of a given entity. Not meant to be set explicitly, except during deserialization.

	
class bear_hug.ecs.CollisionListener(*args, **kwargs)

	Bases: bear_hug.widgets.Listener

A listener responsible for detecting collision

	
bear_hug.ecs.deserialize_component(serial, dispatcher)

	Load the component from a JSON string or dict.

Does not subscribe a component to anything (which can be done either by a
caller or in the ComponentClass.__init__) or assign it to any Entity
(which is probably done within deserialize_entity). The class of a
deserialized Component should be imported by the code that calls this
function, or someone within its call stack.

If there is a risk that

	Parameters

	
	serial – A valid JSON string or a dict produced by deserializing such a string.

	dispatcher – A queue passed to the Component.__init__

	Returns

	a Component instance.

	
bear_hug.ecs.deserialize_entity(serial, dispatcher)

	Load the entity from JSON string or dict.

Does not subscribe a new entity to anything or emit bear_create events;
this should be done by a caller. All components within the entity are
deserialized by calls to deserialize_component

	Parameters

	serial – A valid JSON string or a dict produced by deserializing such a string.

	Returns

	an Entity instance

bear_hug.ecs_widgets module

Two Layouts designed specifically for the ECS system.

	
class bear_hug.ecs_widgets.ECSLayout(chars, colors)

	Bases: bear_hug.widgets.Layout

A Layout of entities.

This layout, besides visualization, provides collision detection. It is
controlled entirely by events. Although Layout methods add_child and
move_child are not overloaded, their use is discouraged. Just like
a regular Layout, ECSLayout resides within a single bearlibterminal layer
and therefore does not provide character overlap for overlapping entities.
Who hides whom is currently determined by the order of widget addition, with
newer entities on top of older ones (Z-levels are to be implemented in a
future release).

Event conventions are as following:

BearEvent(event_type='ecs_create', event_value=entity_object)

Announces that a new Entity has been created and needs to be registered for
ECSLayout. Does not cause it to be placed on screen. The same event tells
the EntityTracker about any newly-created Entities. It should not be emitted
until the Entity has at least an ID and a WidgetComponent.

BearEvent(event_type='ecs_add', event_value=(entity, x, y)).

Announces that the widget of the entity in question should be added to the
ECSLayout at (x;y). This event should not be emitted before both entity and
its widget have been created, and ‘ecs_create’ event has been emitted.

BearEvent(event_type='ecs_move', event_value=(entity, x, y))

Announces that the widget of the entity in question should be moved
to (x; y). If the widget collides into the widget of another Entity (or
multiple widgets), emits BearEvent('ecs_collide', other_entity_id) for
each Entity that was collided into. If the widget touches Layout edges,
emits BearEvent('ecs_collide', None) instead. In either case, collision
does not automatically prevent movement.

BearEvent(event_type='ecs_remove', event_value=entity)

Announces that the widget of a given entity should be removed from
the ECSLayout, but does not cause or imply the its destruction. It is to be
used when the Entity currently on screen needs to be hidden, but is
expected to be shown again later.

BearEvent(event_type='ecs_destroy', event_value=entity)

Announces that the widget of a given entity should be removed from
the ECSLayout, as well as from its entities and widgets lists. This event is
emitted when the entity is destroyed (eg by DestructorComponent) and used by
EntityTracker to know which Entities no longer exist.

BearEvent(event_type='ecs_redraw')

Announces that the layout needs to be redrawn this tick, even if none of the
events above have been emitted. This is useful if some widget (eg animation)
has changed its chars or colors, but was not moved, added or deleted.

If at least one of these events was sent to the ECSLayout, it will redraw
itself on ‘tick_over’.

	Parameters

	
	chars – Layout BG chars

	colors – Layout BG colors

	
add_entity(entity)

	Register the entity to be displayed.

Assumes that the entity has a widget already. The widget is not actually
shown until the ‘ecs_add’ event with its entity ID is emitted.

	Parameters

	entity – Entity instance

	
remove_entity(entity_id)

	Forget about the registered entity and its widget.

Does not imply or cause the destruction of Entity object itself or any
of its Component objects. Making sure that the entity is removed cleanly
is not the Layout’s job.

	Parameters

	entity_id – Entity ID

	
on_event(event)

	See class documentation

	Parameters

	event – BearEvent instance

	
class bear_hug.ecs_widgets.ScrollableECSLayout(chars, colors, view_pos=(0, 0), view_size=(10, 10))

	Bases: bear_hug.widgets.Layout

A ECSLayout that can show only a part of its surface.

Like a ScrollableLayout, accepts chars and colors on creation, which
should be the size of the entire layout, not just the visible area.
The latter is initialized by view_pos and view_size arguments.

This class supports all ‘ecs_*’ events described in the docs for ECSLayout.
In addition, it supports the following two two event types:

BearEvent(event_type='ecs_scroll_by', event_value=(x, y))

Shifts visible area by x chars horizontally and by y chars vertically.

BearEvent(event_type='ecs_scroll_to', event_value=(x, y)

Moves visible area to (x, y).

Both events cause BearLayoutException if event values require visible area
to move beyond Layout borders.

	Parameters

	
	chars – Layout BG chars.

	colors – Layout BG colors.

	view_pos – Top left corner of the initial visible area, 2-tuple (x, y).

	view_size – The size of the visible area, 2-tuple (x, y).

	
add_child(child, pos, skip_checks=False)

	Add a widget as a child at a given position.

The child has to be a Widget or a Widget subclass that haven’t yet been
added to this Layout and whose dimensions are less than or equal to the
Layout’s. The position is in the Layout coordinates, ie relative to its
top left corner.

	Parameters

	
	child – A widget to add.

	pos – A widget position, (x, y) 2-tuple

	
resize_view(new_size)

	Currently not implemented.
:param new_size:
:return:

	
scroll_to(pos)

	Move field of view to pos.

Raises BearLayoutException on incorrect position

	Parameters

	pos – 2-tuple (x, y)

	
scroll_by(shift)

	Move field of view by shift[0] to the right and by shift[1] down.

Raises BearLayoutException on incorrect position.

	Parameters

	shift – 2-tuple (dx, dy)

	
add_entity(entity)

	Register the entity to be displayed. Assumes that the entity has a
widget already.

The entity is not actually shown until the ‘ecs_add’ event is emitted
:return:

	
remove_entity(entity_id)

	Forget about the registered entity and its widget.
Does not imply or cause the destruction of Entity object or any of its
Component objects (except if this was the last reference). Making sure
that the entity is removed cleanly is someone else’s job.

	Parameters

	entity_id – ID of the removed entity.

	
on_event(event)

	See class documentation.

	Parameters

	event – BearEvent instance.

bear_hug.event module

An event system.

Contains a base event class (BearEvent) and a queue.

All events are added to the queue and passed around to listeners’ on_event
methods according to their event_type subscriptions. This happens when
dispatcher.dispatch_events() is called, normally every tick.
on_event callback may return either nothing, a BearEvent, or a list of
BearEvents. If any events are returned, they are added to the queue (preserving
the order, if there were multiple events within a single return list).

In order to be processed, an event needs to have a correct event_type.
Builtin types are the following:

‘tick’, emitted every tick. event_value stores time since the previous such
event.

‘service’, emitted for various events related to the queue or loop functioning.
Example event_types are ‘tick_over’ and ‘shutdown’, emitted during the end of
tick and for shutting down the queue.

‘key_down’, emitted whenever a key or mouse button is pressed. event_value
stores TK code for the button.

‘key_up’, emitted whenever a key or mouse button is released. event_value
stores TK code for the button.

‘misc_input’, emitted whenever there is some non-keyboard input, for example
mouse movement or game window closed via OS UI. event_value stores TK code
for the input event.

‘text_input’, emitted when InputField widget wants to return something.
event_value stores the user-entered string.

‘play_sound’, emitted when someone has requested a sound to be played.
event_value stores the sound ID.

ECS events:

‘ecs_create’, ‘ecs_add’, ‘ecs_move’,’ecs_collision’, ‘ecs_destroy’,
‘ecs_remove’, ‘ecs_scroll_by’, ‘ecs_scroll_to’, ‘ecs_update’. These are
described in detail within bear_hug.ecs_widgets docs.

Any user-defined event_type needs to be registered before use via
dispatcher.register_event_type(). Unknown event types can not be added to
the queue. Event values, on the other hand, are not validated at all.

	
class bear_hug.event.BearEvent(event_type='tick', event_value=None)

	Bases: object

Event data class.

	
class bear_hug.event.BearEventDispatcher

	Bases: object

The BearEvent queue and dispatcher class.

Stores the events sent to it, then emits them to subscribers in
chronological order. To start getting events, a Listener needs to subscribe
via dispatcher.register_listener().

	
register_listener(listener, event_types='all')

	Add a listener to this event_dispatcher.

Any object with an on_event method can be added as a listener. This
method should accept BearEvent as a single argument and return either
nothing, or a single BearEvent, or a list of BearEvents.

To choose event types to subscribe to, event_types kwarg can be
set to a string or an iterable of strings. If an iterable, its elements
should be event types the listener subscribes to.

If a string, the following rules apply:

1. If a string equals ‘all’, the listener is subscribed to all currently
registered event types.

2. Elif a string starts with ‘*’, the listener is subscribed to all
currently registered event types for whose type event_types[1:] is a
substring (regardless of its position). For example, ‘*ecs’ subscribes
to all ECS events, like ‘ecs_add’, ‘ecs_move’, ‘ecs_remove’ and so on;
‘*move’ would subscribe only to ‘ecs_move’ and ‘ecs_remove’.

	Else a string is interpreted as a single event type.

Whether in list or string, unregistered event types raise
BearLoopException.

	Parameters

	
	listener – a listener to add.

	event_types – event types to which it wants to subscribe

	
unregister_listener(listener, event_types='all')

	Unsubscribe a listener from all or some of its event types.

	Parameters

	
	listener – listener to unsubscribe

	event_types – a list of event types to unsubscribe from or ‘all’. Defaults to ‘all’

	
register_event_type(event_type)

	Add a new event type to be processed by queue.

This makes passing (and subscribing to) a new event type possible. No
listeners are automatically subscribed to it, even those that were
initially registered with ‘all’ or fitting ‘*’-types.

	Parameters

	event_type – A string to be used as an event type.

	
add_event(event)

	Add a BearEvent to the queue.

	Parameters

	event –

	Returns

	

	
start_queue()

	Send the queue initialization event.
:return:

	
dispatch_events()

	Dispatch all the events to their listeners.

Whatever they return is added to the queue.

	
dump_queue()

	Remove all events from queue without sending them to their recipients

	Returns

	

bear_hug.resources module

Loaders for the various ASCII-art formats.

	
class bear_hug.resources.ASCIILoader

	Bases: object

A base class for all the resource loaders. It knows how to return its chars
and colors (or a fragment thereof), but expects the children to do their
loading by themselves.

	
get_image()

	Return the entire chars and colors of this loader

	Returns

	chars, colors (two 2-nested lists of equal size)

	
get_image_region(x, y, xsize, ysize)

	Return some rectangular region of this loader’s chars and colors.

	Parameters

	
	x – X coordinate of the leftmost column of required region.

	y – Y coordinate of the topmost row of required region.

	xsize – width of the required region.

	ysize – height of the required region.

	Returns

	chars, colors (two 2-nested lists of equal size).

	
class bear_hug.resources.TxtLoader(filename, default_color='white', load_file=False)

	Bases: bear_hug.resources.ASCIILoader

A loader that reads a plaintext file.

Accepts a filename (anything acceptable by open()) as a single position
argument. Since plaintext files don’t store colour data, all loaded chars
will be the same colour.

	Parameters

	
	default_color – the color of chars.

	load_file – if True, the file is parsed immediately. Otherwise, only its existence is checked on loader creation, but the file is not parsed until something is required from this loader.

	
get_image()

	Return the entire chars and colors of this loader
:returns: chars, colors (two 2-nested lists of equal size)

	
get_image_region(x, y, xsize, ysize)

	Return some rectangular region of this loader’s chars and colors.

	Parameters

	
	x – X coordinate of the leftmost column of required region.

	y – Y coordinate of the topmost row of required region.

	xsize – width of the required region.

	ysize – height of the required region.

	Returns

	chars, colors (two 2-nested lists of equal size).

	
class bear_hug.resources.XpLoader(filename, default_color='white')

	Bases: bear_hug.resources.ASCIILoader

A loader that reads REXPaint [https://www.gridsagegames.com/rexpaint/]
.xp files. The file is never parsed until one of the get_ methods
gets called. Its existence, though, is checked on Loader creation.

As the bear_hug widget API does not allow multi-layered widgets,
get_image and get_image_region return the image with the only the
character and color from the highest non-empty layer. For
getting data from layers separately, use get_layer and
get_layer_region.

Background colors are ignored altogether.

Most of the XP parsing in this class code is taken from MIT-licensed
XPLoaderPy3 [https://github.com/Edern76/XPLoaderPy3], copyright Sean
Hagar, Erwan Castioni and Gawein Le Goff.

	
get_image()

	Return chars and colors for the entire image. For each cell only the
values from the topmost layer are used. Background colors are
ignored altogether.

	Returns

	chars, colors (2 2-nested lists)

	
get_image_region(x, y, xsize, ysize)

	Return chars and colors for the image region.

For each cell only the values from the topmost layer are used.
Background colors are ignored altogether.

	Parameters

	
	x – leftmost column of the required region.

	y – topmost row of the required region.

	xsize – width of the required region

	ysize – height of the required region

	Returns

	chars, colors (2 2-nested lists)

	
get_layer(layer)

	Get chars and (foreground) colors for the entire image layer.

This method does not check layer size and returns whatever is available.
By default, the REXPaint creates layers the size of the entire image, so
this shouldn’t be much of an issue.

	Parameters

	layer – layer number

	Returns

	chars, colors (2 2-nested lists)

	
get_layer_region(layer, x, y, xsize, ysize)

	Return a rectangular region from a certain layer.

	Parameters

	
	layer – layer number

	x – leftmost column of the required region.

	y – topmost row of the required region.

	xsize – width of the required region

	ysize – height of the required region

	Returns

	chars, colors (2 2-nested lists)

	
class bear_hug.resources.Atlas(loader, json_file)

	Bases: object

An image atlas.

An instance of this class accepts a Loader instance and a path to the JSON
file. The latter is parsed immediately and should contain a list of objects,
each of which has five keys: “name”, “x”, “y”, “xsize” and “ysize”. Other
keys, if any, are ignored. The purpose of this is, basically, to be able to
address image regions by a human-readable name, so coordinates and sizes
should describe valid regions in the loader. A single region may be
called by multiple names, but not the other way around. Other values for the
elements, if any, are ignored.

	Parameters

	
	loader – a Loader instance.

	json_file – path to a JSON file (str).

	
get_element(name)

	Return an element with a given name.

If nothing with this name was described in JSON file, raises KeyError

	Parameters

	name – A sub-image ID.

	Returns

	A region (chars, colors)

	
class bear_hug.resources.Multiatlas(atlases)

	Bases: object

A class that contains multiple atlases and fetches elements from whichever
has the element you need.

This class supports the get_element method similar to Atlas, but does
not inherit from it. Consequently, Multiatlas can be created empty and
its atlas list can be extended with valid atlases later.

	Parameters

	atlases – an iterable of Atlas instances

	
add_atlas(atlas)

	Add an atlas to the multiatlas

Checks whether an atlas is valid and has any names shared with other
atlases. If so, throws an exception
:param atlas:
:return:

bear_hug.sound module

A sound system.

Currently it exports a single class called SoundListener. It’s a Listener
wrapper around simpleaudio and wave libraries. While later the backend
is likely to change (at least to support sound formats other than .wav), event
API is probably gonna remain backwards-compatible.

	
class bear_hug.sound.SoundListener(sounds)

	Bases: bear_hug.widgets.Listener

It doesn’t listen to sounds. It listens to the events and plays sounds.

This class is expected to be used as a singleton, ie there is no reason to
have two SoundListeners active at the same time, and therefore no API for it.

Accepts a single kind of event:

BearEvent(event_type=’play_sound’, event_value=sound_name)

If sound_name is a known sound ID, this sound is (asynchronously) played.
Otherwise, BearSoundException is raised. Sounds can be either supplied in a
single arg during creation, or added later via register_sound. In either
case, for a sound either a simpleaudio.WaveObject or a string is expected.
In the latter case, a string is treated as a path to a .wav file.

	Parameters

	sounds – a dict of {'sound_id': simlpleaudio.WaveObject}

	
register_sound(sound, sound_name)

	Register a new sound for this listener

	Parameters

	
	sound – WaveObject or str. A sound to be registered. If str, this is treated as a path to a .wav file.

	sound_name – name of this sound.

	
play_sound(sound_name)

	Play a sound.

In case you need to play the sound without requesting it through the
event.

	Parameters

	sound_name – A sound to play.

bear_hug.widgets module

Various useful Widget and Listener classes
These widgets and listeners are usable outside the ECS and should be sufficient
for simpler games and apps. However, for the sake of clearer architecture,
entities are recommended.

	
bear_hug.widgets.deserialize_widget(serial, atlas=None)

	Provided a JSON string, return a widget it encodes.

Specifics of JSON format are described in the Widget class documentation.
It is important to know, though, that the Widget subclass that a given JSON
encodes should be imported to the code that attempts to call this function.

	Parameters

	serial – a JSON string or dict

	Returns

	a Widget instance

	
bear_hug.widgets.deserialize_animation(serial, atlas=None)

	Deserialize an animation from a JSON dump

	Parameters

	serial – A JSON string or a dict.

	Returns

	an Animation instance.

	
class bear_hug.widgets.Widget(chars, colors, z_level=0)

	Bases: object

The base class for things that can be placed on the terminal.

This class is inactive and is intended to be either inherited from or used
for non-interactive non-animated objects. Event processing and animations
are covered by its subclasses; while it has on_event() method, it does
nothing. This allows Widgets to work without subscribing to the queue and
saves some work on not redrawing them unless the Widget itself considers it
necessary.

Under the hood, this class does little more than store two 2-nested lists of
chars and colors (for characters that comprise the image and their
colors). These two should be exactly the same shape, otherwise a
BearException is raised.

Widgets can be serialized into JSON similarly to Components and Entities.
repr(widget) is used for serialization and should generate a valid
JSON-encoded dict. It should always include a class key which
should equal the class name for that component and will be used by a
deserializer to determine what to create. chars and ``colors` keys are
also necessary. They should encode widget’s chars and colors as arrays of
strings and each of these strings should be a list of values for
chars’ and colors’ inner lists (str-converted chars and str-converted
#ffffff-type colors; comma-separated for colors).

All other keys will be deserialized and treated as kwargs to a newly-created
object. To define the deserialization protocol, JSON dict may also contain
keys formatted as {kwarg_name}_type’`` which should be a string and will
be eval-ed during deserialization. Only Python’s builtin converters (eg
str, int or float) are safe; custom ones are currently
unsupported.

For example, the following is a valid JSON:

{"class": "MyWidget",
"chars": ["b,b,b", "a,b,a", "b,a,b"],
"colors": ["#fff,#fff,#fff", "#000,#fff,#000", "#fff,#000,#fff"],
"former_owners": ["asd", "zxc", "qwe"],
"former_owners_type": "set"}

Its deserialization is equivalent to the following call:

x = MyWidget(chars=[['bbb'],
 ['aba'],
 ['bab']],
 colors=[['#fff','#fff','#fff'],
 ['#000','#fff','#000'],
 ['#fff','#000','#fff']],
 former_owners=set(['asd, 'zxc', 'qwe']))

The following keys are forbidden: parent and terminal. Kwarg
validity is not controlled except by WidgetSubclass.__init__().

	Parameters

	
	chars – a 2-nested list of unicode characters

	colors – a 2-nested list of colors. Anything that is accepted by terminal.color() goes here (a color name or a 0xAARRGGBB/0xRRGGBB/0xRGB/0xARGB integer are fine, (r, g, b) tuples are unreliable).

	z_level – a Z-level to determine objects’ overlap. Used by (Scrollable)ECSLayout. Not to be mixed up with a terminal layer, these are two independent systems.

	
flip(axis)

	Flip a widget along one of the axes.

Note that this method has extremely limited uses: first, it only
affects chars and colors as they are now. If later the widget gets
updated via animation, updating label text, Layout’s children being
redrawn, etc., it will be un-flipped again.

Second, most ASCII-art just doesn’t take it well. Unlike raster and
vector graphics, there is no general way to flip an ASCII image
programmatically (except, of course, flipping chars themselves which I
find aesthetically unacceptable for my projects). It may work for random
noisy tiles, like littered floors, grass and such, but for complex
images it’s better to provide both left and right versions.

	Parameters

	axis – An axis along which to flip. Either one of {‘x’, ‘horizontal’} or one of {‘y’, ‘vertical’}

	Returns

	

	
class bear_hug.widgets.SwitchingWidget(chars=None, colors=None, images_dict=None, initial_image=None, **kwargs)

	Bases: bear_hug.widgets.Widget

A widget that can contain a collection of chars/colors pairs and switch
them on command.

These char/color pairs should all be the same shape. Does not do any
transition animations.

chars and colors args, although accepted during creation, are
discarded. They do not affect the created widget in any way, nor are they
shown at any moment.

	Parameters

	
	images_dict – a dict of {image_id: (chars, colors)}

	initial_image – an ID of the first image to show. Should be a key in images_dict.

	
switch_to_image(image_id)

	Switch to a given image ID

The ID should be a key in the original image_dict. Otherwise,
BearException is raised.

	Parameters

	image_id – image ID, str.

	
class bear_hug.widgets.Layout(chars, colors, **kwargs)

	Bases: bear_hug.widgets.Widget

A widget that can add others as its children.

All children get drawn to its chars and colors, and are thus displayed
within a single bearlibterminal layer. Therefore, if children overlap each
other, the lower one is hidden completely. In the resolution of who covers
whom, a newer child always wins. The layout does not explicitly pass events
to its children, they are expected to subscribe to event queue by
themselves.

The Layout is initialized with a single child, which is given chars and
colors provided at Layout creation. This child is available as
l.children[0] or as l.background. Its type is always Widget.

The Layout automatically redraws itself on tick event, whether its
children have updated or not.

Does not support JSON serialization

	Parameters

	
	chars – chars for layout BG.

	colors – colors for layout BG.

	
add_child(child, pos, skip_checks=False)

	Add a widget as a child at a given position.

The child has to be a Widget or a Widget subclass that haven’t yet been
added to this Layout and whose dimensions are less than or equal to the
Layout’s. The position is in the Layout coordinates, ie relative to its
top left corner.

	Parameters

	
	child – A widget to add.

	pos – A widget position, (x, y) 2-tuple

	
remove_child(child, remove_completely=True)

	Remove a child from a Layout.

	Parameters

	
	child – the child to remove

	remove_completely – if False, the child is only removed from the

screen, but remains in the children list. This is not intended to be
used and is included only to prevent self.move_child from messing
with child order.

	
move_child(child, new_pos)

	Remove the child and add it at a new position.

	Parameters

	
	child – A child Widget

	new_pos – An (x, y) 2-tuple within the layout.

	
on_event(event)

	Redraw itself, if necessary

	
get_absolute_pos(relative_pos)

	Get an absolute position (in terminal coordinates) for any location
within self.

	Parameters

	relative_pos – An (x, y) 2-tuple in Layout coordinates

	Returns

	An (x, y) 2-tuple for the same point in terminal coordinates.

	
get_child_on_pos(pos, return_bg=False)

	Return the newest child on a given position.

	Parameters

	
	pos – Position in Layout coordinates

	return_bg – If True, return background widget when clicking outside any children. If False, return None in this case. Defaults to False

	Returns

	Widget instance or None

	
class bear_hug.widgets.ScrollBar(orientation='vertical', length=10, colors=('gray', 'white'), **kwargs)

	Bases: bear_hug.widgets.Widget

A scrollbar to be used with ScrollableLayout.

Does not accept input, does not support serialization.

	Parameters

	
	orientation – Scrolling direction. One of ‘vertical’ or ‘horizontal’

	length – Scrollbar length, in chars.

	colors – A 2-tuple of (BG colour, moving thingy colour)

	
show_pos(position, percentage)

	Move the scrollbar.

	Parameters

	position – Float. The position of the top (or left) side of the

scrollbar, as part of its length

	Parameters

	percentage – Float. The lengths of the scrollbar, as part of the

total bar length

	
class bear_hug.widgets.ScrollableLayout(chars, colors, view_pos=(0, 0), view_size=(10, 10), **kwargs)

	Bases: bear_hug.widgets.Layout

A Layout that can show only a part of its surface.

Like a Layout, accepts chars and colors on creation, which should be the
size of the entire layout, not the visible area. The latter is initialized
by view_pos and view_size arguments.

Does not support JSON serialization.

	Parameters

	
	chars – Layout BG chars.

	colors – Layout BG colors.

	view_pos – a 2-tuple (x,y) for the top left corner of visible area, in Layout coordinates.

	view_size – a 2-tuple (width, height) for the size of visible area.

	
scroll_to(pos)

	Move field of view to pos.

Raises BearLayoutException on incorrect position

	Parameters

	pos – A 2-tuple of (x, y) in layout coordinates

	
scroll_by(shift)

	Move field of view by shift[0] to the right and by shift[1] down.

Raises BearLayoutException on incorrect position

	Parameters

	shift – A 2-tuple of (dx, dy) in layout coordinates

	
class bear_hug.widgets.InputScrollable(chars, colors, view_pos=(0, 0), view_size=(10, 10), bottom_bar=False, right_bar=False, **kwargs)

	Bases: bear_hug.widgets.Layout

A ScrollableLayout wrapper that accepts input events and supports the usual
scrollable view bells and whistles. Like ScrollableLayout, accepts chars and
colors the size of the entire layout and inits visible area using view_pos
and view_size.

If bottom_bar and/or right_bar is set to True, it will be made one char
bigger than view_size in the corresponding dimension to add ScrollBar.

Can be scrolled by arrow keys.

Does not support JSON serialization

	
class bear_hug.widgets.Animation(frames, fps, frame_ids=None)

	Bases: object

A data class for animation, ie the sequence of the frames

Animation can be serialized to JSON, preserving fps and either frame dumps
(similarly to widget chars and colors) or frame image IDs. For the latter to
work, these IDs should be provided during Animation creation via an optional
frame_ids kwarg. The deserializer will then use them with whichever atlas
is supplied to create the animation.

Since this class has no idea of atlases and is unaware whether it was
created with the same atlas as deserializer will use (which REALLY should be
the same, doing otherwise is just asking for trouble), frame ID validity is
not checked until deserialization and, if incorrect, are not guaranteed to
work.

	Parameters

	
	frames – a list of (chars, colors) tuples

	fps – animation speed, in frames per second. If higher than terminal FPS, animation will be shown at terminal FPS.

	frame_ids – an optional list of frame names in atlas, to avoid dumping frames. Raises BearJSONException if its length isn’t equal to that of frames.

	
class bear_hug.widgets.SimpleAnimationWidget(animation, *args, is_running=True, emit_ecs=True, z_level=0)

	Bases: bear_hug.widgets.Widget

A simple animated widget that cycles through the frames.

	Parameters

	
	frames – An iterable of (chars, colors) tuples. These should all be the same size.

	fps – Animation speed, in frames per second. If higher than terminal FPS, it will be slowed down.

	emit_ecs – If True, emit ecs_update events on every frame. Useless for widgets outside ECS, but those on ECSLayout are not redrawn unless this event is emitted or something else causes ECSLayout to redraw.

	
class bear_hug.widgets.MultipleAnimationWidget(animations, initial_animation, emit_ecs=True, cycle=False, z_level=0)

	Bases: bear_hug.widgets.Widget

A widget that is able to display multiple animations.

Plays only one of the animations, unless ordered to change it by
self.set_animation()

	Parameters

	
	animations – A dict of {animation_id: Animation()}

	initial_animation – the animation to start from.

	emit_ecs – If True, emit ecs_update events on every frame. Useless for widgets outside ECS, but those on ECSLayout are not redrawn unless this event is emitted or something else causes the layout to redraw.

	cycle – if True, cycles the animation indefinitely. Otherwise stops at the last frame.

	
set_animation(anim_id, cycle=False)

	Set the next animation to be played.

	Parameters

	
	anim_id – Animation ID. Should be present in self.animations

	cycle – Whether to cycle the animation. Default False.

	
class bear_hug.widgets.Label(text, chars=None, colors=None, just='left', color='white', width=None, height=None, **kwargs)

	Bases: bear_hug.widgets.Widget

A widget that displays text.

Accepts only a single string, whether single- or multiline (ie containing
``

	`` or not). Does not support any complex text markup. Label’s text can be

	edited at any time by setting label.text property. Note that it overwrites
any changes to self.chars and self.colors made after setting
self.text the last time.

Unlike text, Label’s height and width cannot be changed. Set these to
accomodate all possible inputs during Label creation. If a text is too big
to fit into the Label, ValueError is raised.

	param text

	string to be displayed

	param just

	horizontal text justification, one of ‘left’, ‘right’

or ‘center’. Default ‘left’.

	param color

	bearlibterminal-compatible color. Default ‘white’

	param width

	text area width. Defaults to the length of the longest ``

-delimited substring in ``text.

	param height

	text area height. Defaults to the line count in text

	
class bear_hug.widgets.InputField(name='Input field', accept_input=True, finishing=False, **kwargs)

	Bases: bear_hug.widgets.Label

A single-line field for keyboard input.

The length of the input line is limited by the InputField size. When the
input is finished (by pressing ENTER), InputField emits a
BearEvent(event_type='text_input', event_value=(field.name, field.text))

Since BLT has no support for system keyboard layouts, only supports QWERTY
Latin. This also applies to non-letter symbols: for example, comma and
period are considered to be different keys even in Russian layout, where
they are on the same physical key.

	
finish()

	Finish accepting the input and emit the ‘text_input’ event at the next
opportunity. This opportunity will not present itself until the next
event is passed to self.on_event.

	
class bear_hug.widgets.MenuWidget(dispatcher, terminal=None, items=[], header=None, color='white', items_pos=(2, 2), background=None, switch_sound=None, activation_sound=None, **kwargs)

	Bases: bear_hug.widgets.Layout

A menu widget that includes multiple buttons.

	Parameters

	
	dispatcher – BearEventDispatcher instance to which the menu will subscribe

	items – an iterable of MenuItems

	background – A background widget for the menu. If not supplied, a default double-thickness box is used. If background widget needs to get events (ie for animation), it should be subscribed by the time it’s passed here.

	color – A bearlibterminal-compatible color. Used for a menu frame and header text

	items_pos – A 2-tuple of ints. A position of top-left corner of the 1st MenuItem

	header – str or None. A menu header. This should not be longer than menu width, otherwise an exception is thrown. Header may look ugly with custom backgrounds, since it’s only intended for non-custom menus.

	switch_sound – str. A sound which should be played (via play_sound BearEvent) when a button is highlighted.

	activation_sound – str. A sound which should be played (vai play_sound BearEvent) when a button is pressed

	
class bear_hug.widgets.MenuItem(text='Test', action=<function MenuItem.<lambda>>, color='white', highlight_color='green', **kwargs)

	Bases: bear_hug.widgets.Layout

A button for use inside menus. Includes a label surrounded by a single-width
box. Contains a single callable, self.action, which will be called when
this button is activated.

MenuItem by itself does not handle any input. It provides self.activate
method which should be called by something (presumably a menu containing
this button).

	Parameters

	
	text – str. A button label

	action – callable. An action that this MenuItem performs. This should return either None, BearEvent or an iterable of BearEvents

	color – a bearlibterminal-compatible color that this button has by

default

	Parameters

	highlight_color – a bearlibterminal-compatible color that this button

has when highlighted via keyboard menu choice or mouse hover.

	
highlight()

	Change button colors to show that it’s highlighted

	
unhighlight()

	Change button colors to show that it’s no longer highlighted
:return:

	
activate()

	Perform the button’s action

	
class bear_hug.widgets.FPSCounter(**kwargs)

	Bases: bear_hug.widgets.Label

A simple widget that measures FPS.

Actually just prints 1/(average runtime over the last 100 ticks in seconds),
so it takes 100 ticks to get an accurate reading. Not relevant except on the
first several seconds of the program run or after FPS has changed, but if it
seems like the game takes a second or two to reach the target FPS – it just
seems that way.

	
class bear_hug.widgets.MousePosWidget(**kwargs)

	Bases: bear_hug.widgets.Label

A simple widget that reports current mouse position.

In order to work, it needs self.terminal to be set to the current
terminal, which means it should either be added to the terminal directly
(without any Layouts) or terminal should be set manually before
MousePosWidget gets its first tick event. It is also important that this
class uses misc_input:TK_MOUSE_MOVE events to determine mouse
position, so it would report a default value of ‘000x000’ until the mouse
has moved at least once.

	
class bear_hug.widgets.Listener(terminal=None)

	Bases: object

A base class for the things that need to interact with the queue (and maybe
the terminal), but aren’t Widgets.

	Parameters

	terminal – BearTerminal instance

	
on_event(event)

	The event callback. This should be overridden by child classes.

	Parameters

	event – BearEvent instance

	
register_terminal(terminal)

	Register a terminal with which this listener will interact

	Parameters

	terminal – A BearTerminal instance

	
class bear_hug.widgets.ClosingListener

	Bases: bear_hug.widgets.Listener

The listener that waits for a TK_CLOSE input event (Alt-F4 or closing
window) and sends the shutdown service event to the queue when it gets one.

All widgets are expected to listen to it and immediately save their data or
do whatever they need to do about it. On the next tick ClosingListener
closes both terminal and queue altogether.

	
class bear_hug.widgets.LoggingListener(handle)

	Bases: bear_hug.widgets.Listener

A listener that logs the events it gets.

It just prints whatever events it gets to sys.stderr. The correct
way to use this class is to subscribe an instance to the events of interest
and watch the output. If logging non-builtin events, make sure that their
event_value can be converted to a string. Converstion uses
str(value), not repr(value) to avoid dumping entire JSON representations.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bear_hug	

 	
 	
 bear_hug.bear_hug	

 	
 	
 bear_hug.bear_utilities	

 	
 	
 bear_hug.ecs	

 	
 	
 bear_hug.ecs_widgets	

 	
 	
 bear_hug.event	

 	
 	
 bear_hug.resources	

 	
 	
 bear_hug.sound	

 	
 	
 bear_hug.widgets	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	activate() (bear_hug.widgets.MenuItem method)

 	add_atlas() (bear_hug.resources.Multiatlas method)

 	add_child() (bear_hug.ecs_widgets.ScrollableECSLayout method)

 	(bear_hug.widgets.Layout method)

 	add_component() (bear_hug.ecs.Entity method)

 	add_entity() (bear_hug.ecs_widgets.ECSLayout method)

 	(bear_hug.ecs_widgets.ScrollableECSLayout method)

 	
 	add_event() (bear_hug.event.BearEventDispatcher method)

 	add_widget() (bear_hug.bear_hug.BearTerminal method)

 	Animation (class in bear_hug.widgets)

 	ASCIILoader (class in bear_hug.resources)

 	Atlas (class in bear_hug.resources)

B

 	
 	bear_hug (module)

 	bear_hug.bear_hug (module)

 	bear_hug.bear_utilities (module)

 	bear_hug.ecs (module)

 	bear_hug.ecs_widgets (module)

 	bear_hug.event (module)

 	bear_hug.resources (module)

 	bear_hug.sound (module)

 	bear_hug.widgets (module)

 	BearECSException

 	
 	BearEvent (class in bear_hug.event)

 	BearEventDispatcher (class in bear_hug.event)

 	BearException

 	BearJSONException

 	BearLayoutException

 	BearLoop (class in bear_hug.bear_hug)

 	BearLoopException

 	BearResourceException

 	BearSoundException

 	BearTerminal (class in bear_hug.bear_hug)

 	blit() (in module bear_hug.bear_utilities)

C

 	
 	check_input() (bear_hug.bear_hug.BearTerminal method)

 	check_state() (bear_hug.bear_hug.BearTerminal method)

 	clear() (bear_hug.bear_hug.BearTerminal method)

 	close() (bear_hug.bear_hug.BearTerminal method)

 	
 	ClosingListener (class in bear_hug.widgets)

 	CollisionComponent (class in bear_hug.ecs)

 	CollisionListener (class in bear_hug.ecs)

 	Component (class in bear_hug.ecs)

 	copy_shape() (in module bear_hug.bear_utilities)

D

 	
 	DecayComponent (class in bear_hug.ecs)

 	deserialize_animation() (in module bear_hug.widgets)

 	deserialize_component() (in module bear_hug.ecs)

 	deserialize_entity() (in module bear_hug.ecs)

 	
 	deserialize_widget() (in module bear_hug.widgets)

 	destroy() (bear_hug.ecs.DestructorComponent method)

 	DestructorComponent (class in bear_hug.ecs)

 	dispatch_events() (bear_hug.event.BearEventDispatcher method)

 	dump_queue() (bear_hug.event.BearEventDispatcher method)

E

 	
 	ECSLayout (class in bear_hug.ecs_widgets)

 	
 	Entity (class in bear_hug.ecs)

 	EntityTracker (class in bear_hug.ecs)

F

 	
 	filter_entities() (bear_hug.ecs.EntityTracker method)

 	finish() (bear_hug.widgets.InputField method)

 	
 	flip() (bear_hug.widgets.Widget method)

 	FPSCounter (class in bear_hug.widgets)

G

 	
 	generate_box() (in module bear_hug.bear_utilities)

 	get_absolute_pos() (bear_hug.widgets.Layout method)

 	get_child_on_pos() (bear_hug.widgets.Layout method)

 	get_element() (bear_hug.resources.Atlas method)

 	get_image() (bear_hug.resources.ASCIILoader method)

 	(bear_hug.resources.TxtLoader method)

 	(bear_hug.resources.XpLoader method)

 	
 	get_image_region() (bear_hug.resources.ASCIILoader method)

 	(bear_hug.resources.TxtLoader method)

 	(bear_hug.resources.XpLoader method)

 	get_layer() (bear_hug.resources.XpLoader method)

 	get_layer_region() (bear_hug.resources.XpLoader method)

 	get_widget_by_pos() (bear_hug.bear_hug.BearTerminal method)

H

 	
 	has_values() (in module bear_hug.bear_utilities)

 	
 	height (bear_hug.ecs.WidgetComponent attribute)

 	highlight() (bear_hug.widgets.MenuItem method)

I

 	
 	InputField (class in bear_hug.widgets)

 	
 	InputScrollable (class in bear_hug.widgets)

L

 	
 	Label (class in bear_hug.widgets)

 	layer (bear_hug.bear_hug.WidgetLocation attribute)

 	
 	Layout (class in bear_hug.widgets)

 	Listener (class in bear_hug.widgets)

 	LoggingListener (class in bear_hug.widgets)

M

 	
 	MenuItem (class in bear_hug.widgets)

 	MenuWidget (class in bear_hug.widgets)

 	MousePosWidget (class in bear_hug.widgets)

 	move() (bear_hug.ecs.PositionComponent method)

 	
 	move_child() (bear_hug.widgets.Layout method)

 	move_widget() (bear_hug.bear_hug.BearTerminal method)

 	Multiatlas (class in bear_hug.resources)

 	MultipleAnimationWidget (class in bear_hug.widgets)

O

 	
 	on_event() (bear_hug.ecs.Component method)

 	(bear_hug.ecs.PositionComponent method)

 	(bear_hug.ecs_widgets.ECSLayout method)

 	(bear_hug.ecs_widgets.ScrollableECSLayout method)

 	(bear_hug.widgets.Layout method)

 	(bear_hug.widgets.Listener method)

P

 	
 	play_sound() (bear_hug.sound.SoundListener method)

 	
 	pos (bear_hug.bear_hug.WidgetLocation attribute)

 	PositionComponent (class in bear_hug.ecs)

R

 	
 	rectangles_collide() (in module bear_hug.bear_utilities)

 	refresh() (bear_hug.bear_hug.BearTerminal method)

 	register_event_type() (bear_hug.event.BearEventDispatcher method)

 	register_listener() (bear_hug.event.BearEventDispatcher method)

 	register_sound() (bear_hug.sound.SoundListener method)

 	register_terminal() (bear_hug.widgets.Listener method)

 	relative_move() (bear_hug.ecs.PositionComponent method)

 	
 	remove_child() (bear_hug.widgets.Layout method)

 	remove_component() (bear_hug.ecs.Entity method)

 	remove_entity() (bear_hug.ecs_widgets.ECSLayout method)

 	(bear_hug.ecs_widgets.ScrollableECSLayout method)

 	remove_widget() (bear_hug.bear_hug.BearTerminal method)

 	resize_view() (bear_hug.ecs_widgets.ScrollableECSLayout method)

 	rotate_list() (in module bear_hug.bear_utilities)

 	run() (bear_hug.bear_hug.BearLoop method)

S

 	
 	scroll_by() (bear_hug.ecs_widgets.ScrollableECSLayout method)

 	(bear_hug.widgets.ScrollableLayout method)

 	scroll_to() (bear_hug.ecs_widgets.ScrollableECSLayout method)

 	(bear_hug.widgets.ScrollableLayout method)

 	ScrollableECSLayout (class in bear_hug.ecs_widgets)

 	ScrollableLayout (class in bear_hug.widgets)

 	ScrollBar (class in bear_hug.widgets)

 	set_animation() (bear_hug.widgets.MultipleAnimationWidget method)

 	set_owner() (bear_hug.ecs.Component method)

 	shapes_equal() (in module bear_hug.bear_utilities)

 	show_pos() (bear_hug.widgets.ScrollBar method)

 	
 	SimpleAnimationWidget (class in bear_hug.widgets)

 	Singleton (class in bear_hug.bear_utilities)

 	size (bear_hug.ecs.WidgetComponent attribute)

 	slice_nested() (in module bear_hug.bear_utilities)

 	SoundListener (class in bear_hug.sound)

 	start() (bear_hug.bear_hug.BearTerminal method)

 	start_queue() (bear_hug.event.BearEventDispatcher method)

 	stop() (bear_hug.bear_hug.BearLoop method)

 	switch_to_image() (bear_hug.ecs.SwitchWidgetComponent method)

 	(bear_hug.widgets.SwitchingWidget method)

 	SwitchingWidget (class in bear_hug.widgets)

 	SwitchWidgetComponent (class in bear_hug.ecs)

T

 	
 	TxtLoader (class in bear_hug.resources)

U

 	
 	unhighlight() (bear_hug.widgets.MenuItem method)

 	
 	unregister_listener() (bear_hug.event.BearEventDispatcher method)

 	update_widget() (bear_hug.bear_hug.BearTerminal method)

V

 	
 	validate_image() (bear_hug.ecs.SwitchWidgetComponent method)

W

 	
 	WalkerCollisionComponent (class in bear_hug.ecs)

 	Widget (class in bear_hug.widgets)

 	
 	WidgetComponent (class in bear_hug.ecs)

 	WidgetLocation (class in bear_hug.bear_hug)

 	width (bear_hug.ecs.WidgetComponent attribute)

X

 	
 	XpLoader (class in bear_hug.resources)

 _images/fd24.png
N
IR GS
IR
L

-
\0%

NLoefer

o}

o~ oflo- o o0}
0 ol o] N
o of
o0 ol ol 0 o
- gilol
0.-00M00 oo o]
o] 0 < of
0~ - 00]

F

[FIB1EEET F =5 ol el

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to bear_hug’s documentation!

 		
 Module API reference

 		
 bear_hug package

 		
 Submodules

 		
 Module contents

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

